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has the indicated prerequisites can readily gain an introduction to the theory and 
applications of Markov processes. 

R. P. EDDY 
Applied Mathematics Laboratory 
David Taylor Model Basin 
Washington 7, D. C. 

70 [K].-R. E. BECKHOFER, SALAH ELMAGHRABY & NORMAN MORSE, "A single- 
sample multiple-decision procedure for selecting the multinomial event which 
has the highest probability," Ann. Math. Statist., v. 30, 1959, p. 102-119. 

Consider' N k-nomial trials whose cell probabilities satisfy pi = = 

Pk-I = pk/0 . We select that cell into which the most events fall, breaking a tie at 
random if it occurs. The authors give a 5D table of the probability of selecting cell 
k, for k = 2, 3, 4; 0* = 1.02(.02)1.1(.1)2(.2)3, 10; and N = 1(1)30. An approxi- 
mation is developed and compared with these values. 

J. L. HODGES, JR. 
University of California 
Berkeley, California 

71 [K].-K. G. CLEMANS, "Confidence limits in the case of the geometric distribu- 
tion," Biometrika, v. 46, 1959, p. 260-264. 

The author obtains confidence limits for estimating m, the expected number of 
trials before a device fails, given the sample mean x, and N, the number of devices. 
If N devices each are from an identical geometric distribution, the distribution of 
sample sums will follow a Pascal distribution. Two log-log charts are provided for 
two-sided 90%! and 98% confidence limits for m, 1 _< < 10,000, and N = 2, 5, 10, 
15, 20, 30, 50, 100. The charts are based on the exact distribution. For x > 10,000, 
formulas and tables may be used to determine the confidence limits. For large 
N > 100 a special formula is given. Alternatively for large N, since sample means 
are approximately normal, confidence limits for m may be found as solutions of the 
quadratic equation obtained from t = ( - m) *. m(m + 1), where t is the 
usual normal deviate for the a percent point. 

L. A. AROIAN 
Space Technology Laboratories, Inc. 
Los Angeles, California 

72 [K].-E. T. FEDERIGHI, "Extended tables of the percentage points of Student's 
t-distribution," J. Amer. Statist. Assn., v. 54, 1959, p. 683-688. 

The author states that in using Student's t-distribution in testing component 
parts a need for extending the table of upper percentage points was revealed. The 
method of calculation of these percentage points is presented, and a table containing 
these results is given. Let yt be the elementary density for Student's t with n degrees 

of freedom, and denote f yt dt by P. The values of to are given to 3D for P - 

to 

.25, .10, .05, .025, .01, .005, .0025, .001, 5 X i0- , 25 X i0-, 1 X i0-, 5 X l0-5, 

25 X 10-6 1 X l0-, 5 X 10-6, 25 X 10-7 1 X l06, 25 X 10-8 1 X lo-7 and n 
- 1(1) 30 (5) 60(10) 100, 200, 500, 103, 2 X 103, 104, and oo. It would have been 
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advantageous had the large values of n been arranged conveniently for harmonic 
interpolation, such as n = 60, 120, 240, 480, 960, etc. 

L. A. AROIAN 

,-3fKj.---Rwi-ir Gu7 Ai-4-, "Optimum tolerance- regions- aind- power- -when- sampling 
from some non-normal universes," Ann. Math. Statist., v. 30, 1959, p. 926-938. 

This paper is concerned with obtaining (3-expectation tolerance regions which are 
minimax and most stringent (see [1] and [2]) for the upper tail of the single ex- 
ponential population and for the central part of the double exponential distribution. 
The single exponential probability density function (pdf) is of the form 
a-l exp [- (x - )/a] with x > ,, where one or both of , and a are unknown. The 
double exponential pdf is of the form (2a) 1 exp (-i x - I/a), where , is known 
and a is unknown. The sample values are xi < ... < x,; X = xi/n; 
S = iZt=2 (xi - xi)/(n - 1); Ao and co represent known values of ,u and a;. 
t= El=, I xi -,o 1. Then the optimum tolerance intervals, which are easily identi- 
fied with the situations considered, are [a(x - Mo), Xo), [xi - bpco', ? ), 

[xi - cPs, X ), and [Mo - dat, /o + d,t]. Tables I-IV contain 6D values of a#, b,s, 
co, dp, respectively, for n = 1(1)20, 40, 60 and ,3 = .75, .90, .95, .99. The power 
of tolerance intervals is expressed in terms of parameter al, where a, is determined 

as the solution of (ac) exp t- (x - A)/ ac dx = = measure of desirability, 

for the single exponential case, and from (2cac)-F exp (-j x- i ao) dx -y for 

the double exponential case. Here I(j3) is the tolerance interval considered and 
O < y < 1 (large values indicate greatest desirability). Tables V, VI, and VIII 
contain 7D values of the power for intervals [a,(x - /Ao), X ), [xi- b,cao -c X ), 

[so - dpt, ,uo + dpt], respectively, for n- = 1(2)7, 10, 15, 30, 60, and j3 = .75, .90, 
.95, .99; likewvise for x1cps and Table VII, except that n = 2(2)10, 15, 30, 60. 

J. E. WALsH 

1. D. A. S. FRASER & IRWIN GUTTMAN, "Tolerance regions," Ann. Math. Statist., v. 
27, 1956, P. 162-179. 

2. IRWIN GUTTMAN, "On the power of optimum tolerance regions when sampling from 
normal distributions," Ann. Math Statist., v. 28, 1957, p.. 773-778. 

74[K].-MILOS JILEK & OTAKAR LIKAR, "Coefficients for the determination of one- 
sided tolerance limits of normal distribution," Ann. Inst. Statist. Math. Tokyo 
v. 11, 1959, p. 45-48. 

It is well known that a random sample of size N from a normal universe with 
mean j, and variance 2 yields one-sided tolerance limits (-00, T.) and ( TL, + ??) 
each of which includ-es at least a fraction a of the universe with probability P, where 

Tu= x + ks, 

TL = X- ks, 


